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Introduction to Biophysics 

Subset of Biophysics 

- BIOPHYSICS: The bridge between biology and physics 

o Biology usually presents a problem 

o Physics offers quantitative, abstract, and predictive tools to solve them 

- MOLECULAR BIOPHYSICS: A subset of biophysics, where biological problems presented 

are on the molecular scale 

o Biomolecules and interactions with other molecules 

- CELLULAR BIOPHYSICS: Subset of biophysics focusing on physical principles used in cell 

function 

Significance of Biophysics 

- How does physics play a role in biology? 

o Physicists were the ones who invented ways of approaching biological problems 

o This stimulated a revolution in biological and technological advancements 

- Nowadays, physicists can model and analyze complex systems, or even manipulate 

single molecules 

- There’s still a lot to discover! 

From Big to Small 

cellular communities à cells à molecular structure à biomolecules à simple molecules à 

atoms 

- Molecular biophysics focuses molecular structures and biomolecules 

Aspects of Life 

- All living things are made of cells 

o At higher levels, there are noticeable differences [diversity] 

o Fundamentally, all cells are similar on a molecular scale [unity] 

- Let’s take a closer look at unity at the molecular level 

o Cells use the same chemical building blocks to build their biomolecules (DNA, 

protein, etc.) 

o Information flows from DNA à RNA à Protein 
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o Physical/mechanical properties are very similar 

o The great four macromolecules 

§ Nucleic acid: Crucial role in storing and transmitting genetic information 

§ Protein: They do most of the work in cells and help with the structure, 

function, and regulation of the host 

§ Lipid: Stores long-term energy, protects via formation of barriers and 

membranes 

§ Carbohydrate: Used for energy storage and surface properties 

Central Dogma of Molecular Biology 

- describes the flow of genetic information within a biological system 

o DNA Replication à DNA Transcription à mRNA Translation 

- Differences become information 

o Can we not assume that different links within a chain can carry information? 

o What kind of info? 

Biological Complexity and Modelling 

- DNA 

o we can model only one aspect at a time 

§ Sequence, binding site, charged rod, elastic rod, random walk 

- Proteins 

o proteins have so many different configurations; we need separate models for 

each type of structure (primary, secondary, tertiary, etc.) 

§ We look at hydrophobic or hydrophilic amino acids in sequences 

§ We look at random walks for native states 

§ We look at α-helices and β-sheets for secondary structures 

- Lipid Membrane 

o can be modeled as different types of surfaces, based on phospholipid properties 

§ array of springs, random surface, RC circuit, semi-permeable barrier 

- Cell movement 

o Receptor array, swimmer, random walk, genetic network 
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- Solutions 

o We will be looking at how solutions can be idealized as lattices, mean flow, a 

viscous medium, and more 

o Lattice solution, flow, viscous medium, diffusive landscape, hydrophilic medium, 

dielectric medium 

Modelling as a Spring 

- A lot of biological models are based on simple springs in classical mechanics 

- We can then associate a simple harmonic oscillator to biological systems!! 
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Modelling, Chance, and Entropy 

Starting Point for Modelling 

- BIOPHYSICAL MODEL: A simulation of a biological system that is based upon the physical 

properties of that system 

o Assumptions will need to be made 

o Certain features will have to be ignored à a model will never be perfect 

- One biological system could have many different models! à each with different 

parameters 

o We need to choose what we want to study from that system 

o EX: DNA can be viewed in different ways: 

§ Chemical Structure à Sequences and Binding Sites 

§ Behaviour à due to Charge, Elasticity, Thermal Undulations 

- Always start with the easiest, simplest model 

o Work your way up until your model fails 

o Balance between simplicity and correctness of prediction 

Wrong Models 

- If you’re simplifying something, how can you tell what’s right from wrong? 

o Rooted in foundational or fundamental knowledge 

o If there are known & proven averages or measurements – use them! 

- But, there are also several ways that you can arrive at the “wrong model”  

o No relevance to the system ->wrong parameters 

o Lack of detail à oversimplifying  

o Too many assumptions 

o The perfect model with incorrect results 

§ This usually means that there is something unknown about the situation 

à might lead to breakthrough in science! 

- Just learn from each experience 
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Chance in life: Multiplicity (W) 

- Ex: Coin tossing à a sequence of heads or tails given x coins  

o All sequences are equally probable à Thus unpredictable 

o Is the composition (# of H’s or T’s) predictable? à Yes! 

o How about figuring out the most probable composition or state? à Yes! 

- From Randomness to Predictability 

o Let’s take a look at the randomness of coin flips 

§ Assume coins are on needles and placed in boiling water 

§ Movement of water can “flip” these coins from H to T, T to H randomly 

o What does the system tend towards? 

§ Most probable composition is 50% Heads, 50% Tails 

§ A closed system tends towards a state of higher multiplicity 

• Although we can’t look at SEQUENCE, we look at MULTIPLICITY 

• Multiplicity (W): number of sequences with the same 

composition 

o We look at the number of H’s or T’s in a coin toss 

o Assume n = # of H’s and N = total # of tosses 

o Then N-n = # of T’s 

 
o Each toss is random, but the composition is predictable 

with great precision 

§ Disordered at high multiplicity 

Connecting Multiplicity to Entropy 

- Ludwig Boltzmann established an important link! 

o Connection between the microscopic (W) and macroscopic worlds (E) 

o Connected multiplicity with energy / entropy / equilibria 
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- For a two-state system: 

 
Law of Increase of Entropy 

- Any system tends towards a state of higher entropy! 

o The entropy after some time will be greater than before 

o This is called the “Arrow of Time” 

§ We can determine when a specific event occurred, as lower entropy is in 

the past 

- Example: 

o If there are a bunch of particles in a box... the system will tend towards a higher 

entropy S, so the particles will distribute and expand the box 

Entropic Elasticity of Polymers 

- We can assume that these are entropic springs à Any chain molecule can be depicted 

as “beads on a string” 

- that means: 

o That means there are many configurations of this polymer 

o But which types would be predictable? Less ordered? 

- Consider two cases: 

o FULLY STRETCHED:  

§ Very ordered, less entropy à One chain configuration only 

§ L is total length 
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o PARTIALLY STRETCHED:  

§ Disordered, more entropy à more likely since there are more 

§ x is distance b/w start and end 

Random Walk Model for Polymers 

- We can mimic a polymer using a simple random walk model 

- RANDOM WALK MODEL: random walk on a rectangular lattice, jumping to neighbouring 

sites of the lattice each step length (b). R is the direct length 

 
Example: Genomic Size of Viral DNA 

- What do we have here? 

o Electron microscopy image of a bacteriophage genome that has escaped its 

capsid 

o It’s a ruptured bacterial virus with DNA spilling out! 

- PHYSICAL SIZE: amount of physical space occupied by DNA 

- GENOMIC SIZE: length in base pairs of the DNA 

- estimate the genomic size of DNA by examining the physical size of randomly spread 

DNA à we need… 

o A model relating the physical size of DNA(R) to the number of base pairs (Nbp) 

o Some known values 

§ Length of DNA base pair, length of mitochondrion, diameter of nucleus, 

thickness of lipid bilayer, etc. 

o Let’s work towards that! 

- If we’re trying to model the size of a polymer in solution, we need some parameters 

o Contour Length (L): how much “bend” there is 
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o Persistence Length (ξp): max length where polymer is considered rigid 

o End-to-End Distance (R): distance from tip to tip of polymer chain 

 
o Radius of Gyration (RG): average distance between monomers and center of 

mass of polymer 
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Intramolecular / Intermolecular Interactions and Hydrogen Bonding 

Intramolecular vs. Intermolecular 

- INTRAMOLECULAR FORCE: a force that binds atoms together to make a molecule or 

compound 

o Ionic Bond vs. Covalent Bond vs. Metallic Bond 

o These are strong forces 

§ Chemical bonds are considered intramolecular forces 

§ Can measure bond enthalpies and bond strength to determine chemical 

properties 

- INTERMOLECULAR FORCE: a force that is present between two molecules or atoms that 

are not bonded 

o Often weaker than intramolecular forces 

§ Important since they help determine physical properties of molecules 

like: 

• Boiling Point, Melting Point, Density, Enthalpy of Fusion, etc. 

o Hydrogen Bonding 

o Ionic Bonding 

o Ion-Induced Dipole Forces vs. Ion-Dipole Forces 

o Vander Waals Forces (Keesom, Debye, London Dispersion) 

Valance Shell 

- The outermost electrons determine how atoms interact 

- Inert gases only have filled shells, and are therefore chemically unreactive  

- The outmost shell of other elements is unfilled and can participate in reactions with 

other atoms/molecules  

- An element's chemical reactivity is based on how its outermost electron field (valence 

shell) is filled  
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Ionic Bond 

- formed when electrons are transferred from one atom to another 

- Ex: NaCl 

o Na has 1 electron in valence shell 

o Cl has 7 electrons in valence shell 

o When electron jumps from Na to Cl, both atoms become charged ions 

o Na+ and Cl- experience electrostatic attraction (between oppositely charged 

atoms), and form an ionic bond 

Covalent Bond 

- formed when electrons are shared between two or more atoms 

- A MOLECULE is a cluster of atoms held together by covalent bonds 

o Shared electrons complete valence shells of both atoms to become more INERT 

- BOND LENGTH between two nuclei is determined by attraction/repulsion 

- Ex: Hydrogen atom 

o Each H has 1 electron in valence shell 

o Alone, its valence is incompletely filled 

o Together, two H atoms share 2 electrons 

§ Obtain completely filled 1st shell 

§ Shared electrons adapt modified orbits around the two nuclei 

§ Distance between the two nuclei is optimized by electrostatics and gives 

us a bond length of 0.074 nm 

- There can be more than one covalent bond per molecule 

o How can we determine how many bonds there will be? 

§ We look at the number of missing electrons in valence shell! 

- Spatial Geometry 

o Covalent bonds are characterized by particular geometries 

o Molecules formed by O, N, C have a precise 3D structure defined by BOND 

ANGLES and BOND LENGTHS 

o H2O has a V-shape due to 109° bond angle for oxygen 
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- Bond Strength 

o the amount of energy that must be supplied to break a covalent or noncovalent 

bond 

o Expressed in units of kcal/mole or kJ/mole 

§ Kilocalorie: amount of energy needed to raise temperature of 1L of water 

by 1°C  

• 1kcal=4.2kJ 

o Covalent bonds are strong because 

§ They become more inert as outer valence is completely filled 

§ Not breakable spontaneously at room temperature 

§ Responsible for the formation of small and large molecules 

- Single and Double Bond 

o Sometimes, covalent bonds can share more than two electrons 

o SINGLE BOND:  

§ sharing of one e- from each atom/molecule 

o DOUBLE BOND:  

§ sharing of two e- from each atom/molecule 

§ More “stiff”, short, and cannot rotate (planar) 

§ Major influence on 3D shape of macromolecules 

- Polar and Non-Polar 

o Different atoms are attracted to each other to different degrees 

§ C,N,O atoms attract electrons strongly, while H atom is weak  

§ A POLAR structure is one where: 

• Positive charge is concentrated towards one end of the molecule 

(positive pole) 

• Negative charge concentrated to the other end (negative pole) 

o POLAR COVALENT BOND: covalent bonds that share electrons unequally 
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Hydrogen Bond 

- The water molecule is a PERMANENT DIPOLE  

o Contains covalent bonds connecting atoms together 

- Water molecules are held together and connected by HYDROGEN BONDS 

o It is a polarizable medium 

Weak Intermolecular Forces 

- COULOMB FORCE 

o electrical force between charged particles  

o Can be described using Coulomb’s Law 

o Weak in water 

- CHARGE-DIPOLE INTERACTIONS 

o occur in presence of atom with formal net charge and a dipole 

- CHARGE-DIPOLE INTERACTIONS 

o occur in presence of atom with formal net charge and a dipole that rotates 

o We model net charge as a sphere 

- DIPOLE-DIPOLE INTERACTIONS  

o occur in presence of two molecules with dipoles 

- DIPOLE-DIPOLE INTERACTIONS 

o occur in presence of two molecules with dipoles that rotate 

- CHARGE-INDUCED DIPOLE FORCE 

o a dipole is induced on a net-zero charge due to a neighbouring charge q 

- DIPOLE-INDUCED DIPOLE FORCE 

o a dipole is induced on a net-zero charge due to a neighbouring dipole 

- LONDON DISPERSION FORCE 

o attraction between two transient, quantum dipoles that arise from quantum 

fluctuations 

- VAN DER WAALS FORCES 

o weak, short-ranged electrostatic attractive forces between uncharged molecules 

o Arise from interaction of permanent or transient electric dipole moments 
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Types of Hydrogen Bonds 

- Hydrogen Bond (H-Bond) 

o an electrostatic force of attraction between 

§ (1) an H atom that’s covalently bound to a more electronegative group 

like O, N, F, and 

§ (2) another electronegative atom (like O, N, F) bearing a lone pair of 

electrons 

- Hydrogen bonds can be: 

o Intermolecular: occurs between separate molecules (e.g. H2O) 

o Intramolecular: occurs within same molecule (e.g. C2H4(OH)2) à folds into itself 

Hydrogen Bond in Water 

- Hydrogen bonds are formed between two adjacent H2O molecules 

o This is because they are polarized 

- Hydrogen bonds are strongest when linear 

o They have 1/20 of the strength of a covalent bond 

Water Molecule 

- WATER MOLECULE has net neutral charge (# protons = # electrons) 

- But electrons are ASYMMETRICALLY DISTRIBUTED, making water a POLAR MOLECULE 

o Oxygen nucleus draws e- away from hydrogen nuclei 

o H becomes more positive (δ+) and O becomes negative(δ-) 

Water Network 

- Water molecules join together as a HYDROGEN-BONDED NETWORK 

o H-bonds constantly form, and constantly break (~33% broken at room 

temperature) 

o As T rises, there are less H-bonds (more breaks) 

- Such COHESION is responsible for water’s unique properties: 

o High surface tension  

o Specific heat 

o Heat of vaporization 
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Tetrahedral Bonding 

- Each water molecule forms a TETRAHEDRAL BONDING arrangement with its 

neighbouring water molecules 

- Why is this possible? 

o Oxygen is bound to 2 H and 2 lone pairs 

o Together, four pieces need to be separated equally à Forms a tetrahedral shape 

- MULTIPLICITY (W): total number of fully H-bonded configurations of the central 

molecule 

o There are a total of 6 tetrahedral H-bonding arrangements (W=6) 

o Central H2O molecule can be H-bonded with 4 surrounding water molecules on 

the tetrahedral vertices, each facing towards one edge 

 

- Presence of other hydrophobic/hydrophilic molecules can affect H-bonding 

arrangements 

Hydrophilic Molecules 

- substances that dissolve readily in water 

- Composed of ions or polar molecules that attract water 

- Water surrounds each ion or polar molecule and carry it into the solution 
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Hydrophobic Molecules 

- substances that contain a majority of nonpolar bonds, rendering them insoluble in 

water 

o Non polarized molecules do not attract water  

o Chances of surrounding substance are slim 

- Hydrocarbons that contain many C-H bonds are especially hydrophobic 

Hydrophobic Molecules in Water 

- What happens if we introduce an oily (hydrophobic) substance inside water? 

o It does not break the previously formed hydrogen bonds  

o H-bonds are not broken, but rather water molecules are reoriented around oily 

substance to remain fully H-bonded 

o Entropy decreases since reoriented molecules are more structured than before 

o But that means individual water molecule entropy remains the same 

o If temperature increases, water molecules are heated and have more 

movement, disrupting H-bonds 

§ Become less structured, and therefore has higher entropy 

- We introduce an oily substance at a vertex; so edges with this vertex are no longer 

possible configurations 

o Now W=3 
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Hydrophobic Forces in Water 

- Water forces hydrophobic groups together to minimize their disruptive effects on the H- 

bonded water network 

- The more hydrophobic groups that are separated, the more entropy decreases for water 

- Combined hydrophobic groups increase entropy 

Water and Life 

- Weak interactions play a crucial role in everything 

- Key constant: 

o Boltzmann constant kb = 1.38 e-23 m2kgs-2K-1 or J/K 

o Temperature at T = 300K, 1 kbT = 0.6 kcal/mol = 4.14 e-21 J = 1/40 eV 

o Energy of H-atom is ~10 eV 

o Covalent bonds between atoms are ~1 eV 

Hydrogen Bonds in Water 

- If a molecule can form H-bonds with water, then they can form H-bonds between each 

other 

o H-bonds formed between molecules dissolved in water are relatively weak à 

due to competition with H2O 

H-Bonds in DNA 

- DNA is made of four nucleotide building blocks 

- Two strands of DNA are held together by hydrogen bonds between base pairs 

o Bases are hydrophobic and located on inside of structure, creating helix 

H-Bond in Protein 

- Polypeptide chains often fold into either α-helix or β-sheet forms 

o For α-helix: H-bonds are between N-H and C=O of neighbouring peptides within 

one strand 

o For β-sheet: H-bonds are between peptide bonds in different strands 

Self-Assembly of Lipids 

- Formation of a sealed compartment that shields hydrophobic tails from water 
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Entropy and Free Energy 

Temperature 

- TEMPERATURE 1.0: what you measure with a thermometer 

- TEMPERATURE 2.0: the thing that’s the same for two objects after they have been in 

contact for a while (THERMAL EQUILIBRIUM) 

o The exchange quantity to achieve thermal equilibrium is energy 

- TEMPERATURE 3.0: a measure of the tendency of an object to spontaneously give up 

energy to its surroundings 

o When two objects are in thermal contact, the one that tends to spontaneously 

lose energy is at the higher temperature 

Ideal Gas Law 

- PV=nRT 

- In thermodynamics, PV=NkbT, N = number of molecules 

Entropy 

- SECOND LAW OF THERMODYNAMICS: the total entropy of an isolated system increases 

over time 

o Multiplicity tends to increase 

- ENTROPY (S): the logarithm of the number of ways of arranging things in the system, 

multiplied by Boltzmann’s constant 

o Unit: J/K when W (number of microstates within a given state) is unitless 

 

- ENTROPY is also referred to as the “disorder” of a system à the more there are ways to 

arrange the molecules, the higher the entropy 
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Chemical Thermodynamics 

- The study of chemical reactions constrained by the laws of thermodynamics 

o The system does not end up in the same state where it started 

- What’s different in chemical reactions versus cyclic processes? 

o The system is not isolated but rather interacting with its surrounding all the time 

o There interactions can be thermal or mechanical 

o The energy of the system is usually not fixed 

- We can fix some parameters 

Enthalpy (H) 

- the energy needed to create a system plus the work needed to make room for it 

 
Helmholtz Free Energy (F) 

- the energy needed to create a system, minus the energy you can get from the 

environment à Energy needed to create the system from scratch 

o Energy from environment is the heat you can get for free from a specific 

temperature 

 
Gibbs Free Energy (G) 

- in a system at constant pressure and temperature, this is the work needed to create it 

- Delta G in a creation tells us the maximum amount of work that can be obtained from a 

reaction 
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Important Diagram 

 
Two-Level Systems for Energy Levels 

- The more ENERGY LEVELS/SHELLS an atom has, the more energy it has (more electrons) 

- We can use a TWO-LEVEL SYSTEM as a simple model 

o Focus on 2 levels: 𝜖=0 (ground state), 𝜖=1 (excited state) 

- Total energy (U) = Sum of each individual energy state times the number 

- The multiplicity (different ways that we can distribute the particles if the total energy 

does not change) is: 

 
- For an INSULATED, COMBINED SYSTEM with two parts, multiply the multiplicities to get 

the total multiplicity 
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- For a COMBINED SYSTEM IN THERMAL CONTACT 

o Can exchange energy in the form of heat 

o Since the system will always tend towards larger multiplicity or greater entropy 

§ Utotal = the sum of the energy of two systems 

§ Determine a way to distribute the multiplicity to obtain the highest 

overall multiplicity (the product of two multiplicity) 

• Always happens at thermal equilibrium 

- Heat will always flow from a high-temperature system to a low-temperature system if 

both systems are in thermal contact 

o This flow will continue until the temperature is uniform, at which point the total 

multiplicity and total entropy is maximized 

Probability and Multiplicity 

- Probability is proportional to multiplicity 

 
- Minimum free energy state is the most probable state 

o The probability to be in any free-energy state is given below 
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Protein Structure and Function 

Protein 

- a class of macromolecules that consists of one or more chains of amino acid residues 

o They perform many functions within organisms, from molecular transport to 

DNA replication 

- A PROTEIN SEQUENCE helps to determine a protein’s 3D structure 

o This structure plays a role in determining its function 

- Any MISFOLDING of proteins can cause medical issues/diseases 

o This type of disease is a proteopathy 

o Examples: Alzheimer’s disease, Parkinson’s disease 

Protein Functions 

- An ENZYME catalyzes covalent bond breakage or formation 

o Living cells contain thousands of different enzymes 

o Each can catalyze (speed up) a particular reaction 

o Examples: 

§ Trypotophan Synthetase - makes the amino acid tryptophan 

§ Pepsin - degrades dietary proteins in the stomach 

§ DNA Polymerase - copies DNA 

§ Protein Kinase - adds a phosphate group to a protein molecule 

- A STRUCTURAL PROTEIN provides mechanical support to cells and tissues 

o Collagen & Elastin – common constituents of the extracellular matrix [outside 

the cell] and form fibers in tendons and ligaments 

o Tubulin – forms long, stiff microtubules [inside the cell] 

o Actin - forms filaments that underlie and support the plasma membrane [inside 

the cell] 

o α-Keratin – forms fibers that reinforce epithelials (ie. hair, horn) 

- A TRANSPORT PROTEIN carries small molecules or ions 

o Many proteins embedded in cell membranes transport ions or small molecules 

across the membrane 
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o Examples: 

§ Serum Albumin – carries lipids 

§ Hemoglobin – carries oxygen 

§ Transferrin – carries iron 

§ Bacteriorhodopsin – light-activated proton pump in bacteria that 

transports H+ ions out of the cell 

- A MOTOR PROTEIN generates movement in cells and tissues 

o Myosin – provides the motive force for humans to move 

§ Located in skeletal muscle 

o Kinesin – interacts with microtubules to move organelles around the cell 

o Dynein – enables eukaryotic cilia and flagella to beat 

- A STORAGE PROTEIN is a protein that stores amino acids or ions 

o Ferritin – iron binds to this small protein to be stored in the liver 

o Ovalbumin – in egg white; used as a source of amino acids for the developing 

bird embryo 

o Casein – in milk; used as source of amino acids for baby mammals; health 

supplements 

- A SIGNAL PROTEIN carries extracellular signals from cell to cell 

o Many of the hormones and growth factors that coordinate physiological function 

in animals are signal proteins 

o Examples: 

§ Insulin – small protein that controls glucose levels in the blood 

§ Nerve Growth Factor (NGF) – stimulates some nerve cells to grow axons 

§ Epidermal Growth Factor (EGF) – stimulates growth and division of 

epithelial cells 

- A RECEPTOR PROTEIN detects signals and transmits them to the cell’s response 

machinery 

o Rhodopsin – in the retina; detects light 
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o Acetylcholine Receptor – activated by acetylcholine released from a nerve 

ending 

o Insulin Receptor – allows a cell to respond to the hormone insulin by taking up 

glucose 

- A TRANSCRIPTION REGULATOR binds to DNA to switch genes on/off 

o Lac Repressor – in bacteria, it silences the genes for the enzymes that degrade 

the sugar lactose 

o DNA-binding Protein – acts as a genetic switch to control development in 

multicellular organisms, including humans 

- A SPECIAL-PURPOSE PROTEIN is highly variable in nature 

o Organisms make many proteins with highly specialized properties 

o Examples: 

§ Antifreeze Proteins – in Arctic and Antarctic fishes, they protect their 

blood against freezing 

§ Green Fluorescent Protein – in jellyfish, they emit a green light 

§ Monellin – a protein found in an African plant; sweet taste 

§ Glue Proteins – allows mussels to stick to rocks in seawater 

Amino Acids 

- Proteins are assembled from a set of 20 different amino acids 

- Each AMINO ACID has different chemical properties 

o They are linked together by covalent peptide bonds 

- The general formula (R is the size chains) 
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Classification of Amino Acids 

- By polarity: POLAR vs. NONPOLAR 

o At pH = 7, any amino and carboxyl groups will be ionized 

- For POLAR amino acids, we can also subcategorize them by: 

o Acidic: negatively charged side chains 

o Basic: positively charged side chains 

o Uncharged polar: no ionization of side chains, but side chain is polar 
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Polypeptide Chain 

- when amino acids are linked together in a chain 

o Different proteins will have different amino acid sequences 

o They are linked together by peptide bonds 

- A PROTEIN is a long polymer of amino acids 

o Short (<50) amino acid chain is a PEPTIDE 

o Always write with N-terminus on left to C-terminus on right 

Formation of Peptide Bonds 

- A CONDENSATION REACTION removes water from the system 

o Carboxyl group (-COOH) will share electrons with adjacent amino group (-NH2) 

- A COVALENT BOND forms between one amino acid’s AMINE NITROGEN and the other’s 

CARBOXYL CARBON 

o A molecule of water is removed as a side product 

 

Bond Angles in a Polypeptide Chain 

- The peptide bond is PLANAR, so they lie on an AMIDE PLANE 

o The α-CARBON in between amide planes allows for rotation 

- This will give us two angles: 

o Cα-N bond angle is represented by 𝜑 (phi) 

o Cα-C bond angle is represented by ψ (psi) 
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Configurations 

- The BOND ANGLES for either 𝜓 or 𝜑	can be from -180° to +180° 

- We can define CIS or TRANS configurations of peptide bonds 

o R groups on the same side: Cis à interaction of R-groups 

o R groups on different sides: Trans 

- Although there can be many bond angles for 𝜓 and 𝜑... 

o There are steric collisions between atoms within each amino acid 

o Most pairs of 𝜓 and 𝜑 do not occur 

 
Ramachandran Plot 

- presents observed pairs of angles in a protein, allowing us to see which configurations 

are favoured 

 
Modelling Bond Angles 

- We need to look at relative angles between two planes to determine how many 

different configurations there are 

o Define an axis of rotation 

o Change the angle of one plane at a time 
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Protein Folding: Helix-Coil Transitions 

Protein Folding 

- WEAK INTERACTIONS create strong bonding arrangements 

- HYDROPHOBIC FORCES help proteins fold into compact conformations 

o Polar amino acid side chains tend to be on the outside of folded protein 

o Non-polar amino acid side chains are buried inside to form highly packed 

hydrophobic core 

- Hydrogen bonds within a protein molecule help to stabilize its folded shape and 

conformation 

- They can occur between backbones and/or side chains 

o Allow for many configurations 

Ensuring Proper Folding 

- Various CHAPERONE PROTEINS assist in the covalent folding or unfolding of 

macromolecules, specifically protein folding 

o They prevent newly synthesized polypeptide chains and assembled subunits 

from aggregating into non-functional structures 

o Many are heat shock proteins à because heat can cause stress, which increase 

the likelihood of unproper folding 

Secondary Structures 

- The SECONDARY STRUCTURES of proteins are driven by weak interactions 

- The α-HELIX and β-SHEET are common folding patterns 

o They result from hydrogen bonds that form between the N-H and C=O groups in 

the polypeptide backbone 
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- α-HELIX  

o can be left or right handed 

 
o A segment of an α-helix can CROSS A LIPID BILAYER 

§ The hydrophobic side chains on the helix can insert into the hydrophobic 

core of the lipid bilayer 

o Helices can intertwine to create a COILED-COIL 

§ The minimize exposure of hydrophobic residues 

- β-SHEET 

 
o Can be antiparallel (H-bond with adjacent) or parallel (alternating H-bonding) 

Higher level of Organization 

- Many TERTIARY STRUCTURES will be composed of separate FUNCTIONAL DOMAINS 

- There are both helices and sheets packed into a stable element 
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α-Helix COIL TRANSITION 

- RIGHT-HANDED COIL is the most favourable conformation of the alpha helix 

o Stabilized by hydrogen bonds 

- We can take a look at the SUBUNITS for each homogeneous polypeptide chain 

o Each subunit can either be in a helix or coil state 

- Can make predictions based on states 

- There are two possible states for each monomer in a HOMOGENEOUS POLYPEPTIDE 

CHAIN 

o Coil: Bond angles are free to rotate, larger entropy 

o Helix: bond angles are frozen, lower energy state 

- We can set the monomer to be in one of the two states: H (Helix) or C (Coil) 

o Once you have an H-bond to form the H state, it becomes a cascade effect, 

where each additional H-bonds is easy to form 

o Hydrogen bonds are usually between the jth amino acid and the (j+4)th amino 

acid 

§ Because there are 4 amino acids per turn 

- We care about DNA and protein denaturation 

o Temperature causes transition between H and C 

- These transitions are cooperative  

o Amount of helix changes in a sigmoidal way as a function of an external variable 

(such as temperature) 

o Sigmoidal curve steepens with increasing size of system (in this case, chain 

length) 

- We want to calculate cooperativity, or ratio of H to C in a solution 
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The Lifson-Roig Model 

- LR model assigns each residue in a polypeptide a helical (H) or coil (C) residue state 

o Represent polypeptide with a string of H and C 

o Total of 2^N molecular states  

- We can assign individual residues a STATISTICAL WEIGHT 

o The product of these weights gives rise to a statistical weight for that particular 

molecular state (all residues together) 

o We can predict observable properties  

o 𝒖	is residue weight assigned to coil states 

o 𝒗	is residue weight assigned to helix states with coil neighbour 

o 𝒘	is residue weight assigned to helix states, no coil neighbour 

- The statistical weights are based on LOCAL INTERACTIONS 

- The expected overall state is the sum of the probability times the value  

Partition Function (Z) 

- describes the statistical properties of a system in thermodynamic equilibrium 

o dimensionless 

- Focus on CANONICAL partition function 

o System is allowed to exchange heat with the environment 

o Fixed temperature, volume, and number of particles 

o Assume each weight is equal to its multiplicity W and sigma equals to 1 

 

 
o Can also use matrix formalism (for sigma not equal to 1) 
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Simpler Model 

- If we divide all the states by the Weight (C), then C will become a reference point for 

further analysis and comparison 

- Since the weight of each microstate is equal to its multiplicity 

o For each C, the weight is 1 

o For each H after an H, the weight is 𝑠 

o For each H after a C, the weight is 𝜎𝑠 

- 𝜎	is a constant related to the probability of getting H after a C 

o Much less than 1 (10−4 ≤𝜎≤10−2) since the probability to start helix is lower 

than getting a helix after a helix 

- FRACTIONAL HELICITY: The ratio of helix states to the total number of residues or 

monomers in the sequence 

 

 
o May also be defined using T and Tc (critical temperature) 

 
- Physical meaning of s 

o Relative weight for H 

 
  



 34 

Testing Coil-Helix Transition 

- Will a given polypeptide assume a random coil or α-helix structure? 

o Depends on competition between conformational entropy and H-bond 

formation 

§ Depends on composition, thermal environment, and chemical 

environment 

- We can test the helix-coil transition using POLARIZED LIGHT 

o We can see a near-total conversion of sample from one form to the other upon 

temperature change 

 
o As the size of protein increases, it is more sensitive to change in temperature  

Hydrogen Bonds in Water 

- Any molecule that can form H-bonds to each other can alternatively form H-bonds to 

water molecules 

o The competition with water molecules means that the H-bonds formed between 

two molecules dissolved in water are relatively weak 

Proline (Pro, P) as a Helix Breaker 

- Stabilizes an H-bond between monomer j and j+2 

o Does not skip 3 monomers, so it does not form helix à helix breaks if Pro is 

added 
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Protein Folding: Toy Model 

Protein Can Assemble into Shapes 

- Proteins can assemble into COMPLEX STRUCTURES  

o Ex: Dimers, helices, and rings 

- These complex proteins connect together through BINDING SITES 

o Different types of binding sites will result in different overall conformations 

- Some proteins have elongated fibrous shapes 

o COLLAGEN is a triple helix formed by 3 protein chains 

o ELASTIN has molecules cross-linked together 

Stabilization of Proteins 

- DISULFIDE BONDS (S-S BONDS) help to stabilize a favoured protein conformation 

o Most common covalent cross-links 

o They don’t change the conformation, they reinforce a protein’s shape so that it 

retains its activity longer 

Protein Binding Sites 

- 3D structures allow proteins to interact with other molecules 

- BINDING SITES allow a protein to interact with SPECIFIC LIGANDS 

o Protein folding usually creates cavities on protein surface 

o These cavities contain a set of amino acid side chains that can bond only with 

certain ligands 

- KEY-LOCK MECHANISM of biological recognition arises from a mixture of shape and 

weak interactions 

- Ex: Antibodies and Antigens 

o An ANTIBODY is Y-shaped and has 2 identical binding sites for its ANTIGEN, one 

on each arm of the Y 

o Antibody is composed of 4 polypeptide chains (2 heavy, 2 light) 

§ Held together by disulfide bonds  

o Each chain has two domains: variable and constant 

§ Variable domains are closest together and form an antigen-binding site 
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§ They differ the most to provide variety in attracting different antigens 

and molecular recognition 

- Proteins are held together by weak bonds, but allow the FOLDED PROTEIN to interact 

specifically with other molecules 

 
Protein Folding 

- Proteins must be in the right shape, or else they can’t function 

o Certain thresholds of multiplicity need to be met for different structures 

§ For a folded protein, W is about 1 

- Driving force 

o HYDROPHOBIC (NONPOLAR) AMINO ACIDS are the main driving force behind 

protein folding since they want to be “buried” inside 

Protein as Random Walks 

- PROTEIN CONFORMATIONS are compact, with solvent typically making contact only 

with amino acids at surface of the protein 

- Use COMPACT RANDOM WALKS 

o Also Hamiltonian walks 

o Self-avoiding random walks that visit every site of lattice 

- By covering all lattice sites by monomers, all solvent sites are pushed to the surface 
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Homo-Polymer 

- HOMO means that all the monomer subunits are the same 

- We can look at the number of HYDROPHOBIC CONTACTS 

- We can also look at both hydrophobic (H) and hydrophilic (P) contacts to try and get a 

unique ground state (𝑊𝑁 = 1) 

o A good candidate for protein structure 

- Main Goal: Some sequences are good candidates for a protein if they can fold in a 

unique way for a specific # of H or P contacts 

o We now consider an HP Model 

HP Model 

- The HP MODEL divides 20 amino acids into 2 classes: 

o HYDROPHOBIC (H): Ala, Val, Ile, Met, Leu, Phe, Trp, Cys, Tyr 

o POLAR (P): Gly, Asn, Ser, Thr, Glu, His, Pro, Arg, Gln, Asp, Lys 

- This model is useful because: 

o It is a drastic reduction of the complexity of the sequence 

§ For a 100-mer, the number of possible sequences goes from 20100 to 2100  

§ Allows us to analyze complex problems using a simplified model 

- The HYDROPHOBIC ENERGY of an HP model depends on sequence à assign an energy 

cost (𝜺) for every unfavourable contact 

o The weight for the state will be e^(- 𝜷 x cost) 

- This PROTEIN FOLDING PROBLEM can be asked for each sequence: 

o Given an HP sequence, which of the possible structures minimizes the 

hydrophobic interaction energy 

o The lowest energy state is identified as the native state of the protein 

- We can calculate the PROBABILITY of finding the chain in the native structure as follows: 
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Probability of Finding Native State 

- A SIGMOIDAL PLOT is characteristics of many real proteins 

 
Degeneracy of the Native State 

- For a given sequence, the DEGENERACY 𝒈𝑵𝑵 (or simply multiplicity 𝑊𝑁𝑁) of the native 

state is the number of lowest energy (native) conformations 

o Good protein will have gN = 1, and the shape matters 

- For a given number of monomers (𝑁), we can try to figure out how many sequences (2-

3%) are PROTEIN-LIKE 

- Protein structures that have large number of protein-like sequences associated with 

them are called DESIGNABLE PROTEINS 

Sequence Design 

- We can use our knowledge of HP sequence design to choose specific conformations of 

proteins 

o Hydrophobic residues are usually sequestered in the interior of the bundle 

o Polar ones are on the surface facing the solvent 
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Chain Entropy vs. Energy 

- What are the differences between an OPEN (DENATURED) and COLLAPSED (FOLDED) 

protein? 

- Free energy of Folding 

o 𝑈 = −𝜀 × (# of favourable contacts), 𝜀	is related to T 

o HEAT DENATURATION: If |𝜀| decreases with increasing temperature 

o COLD DENATURATION: If |𝜀| decreases with decreasing temperature 

 

Two Competing Views 

- There are two competing views about protein folding into secondary structures, and the 

energetics behind it 

o Framework Model 

§ The formation of secondary structure precedes chain collapse 

§ This means that there is less chain entropy to lose 

§ Folding is driven by local interactions 

o COLLAPSE MODEL:  

§ Chain collapse promotes the formation of a secondary structure 

§ Governed by hydrophobicity (non-local interactions) 

§ Inside the collapsed protein, the density of water is lower 

• This means that hydrogen bonding is stronger 

• With stronger hydrogen bonding, there is a stronger tendency to 

from alpha-helices or beta-sheets 
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§ If compact, there is less chain-entropic penalty for forming secondary 

structures 

§ As the proteins continues to collapse, there are more “hydrophobic” gaps 

within the protein 

• This reduces competition with polar molecules, reinforcing 

hydrogen bonding 

Levinthal Paradox 

- A rough estimate would say that 1050 conformations are possible for a polypeptide 

chain such as ribonuclease (124 monomers). 

- Even if the molecule could try a new conformation every 10-13 seconds, it would still 

take about 1030 years to try a significant fraction of them. 

- Is folding pathway random? 

o Theoretically, if random, it would take very long to find the protein’s native state 

o But the folding times for real proteins is 10 mus to minutes 

Energy Landscape 

- FOLDING KINETICS can be described using ENERGY LANDSCAPES 

o Levinthal Paradox assumes golf-course landscape (2D) where everything has the 

same free energy (equally random) 

o A smooth funnel landscape takes into account different energies of different 

conformations 

- Proteins with FUNNEL-LIKE FOLDING LANDSCAPES are said to be under 

THERMODYNAMIC CONTROL 

- Proteins with RUGGED FOLDING LANDSCAPES are said to be under KINETIC CONTROL 
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Enzymes and Reaction Kinetics 

Enzymes 

- An ENZYME helps to speed up energetically favourable reactions 

o They help produce disorder in the universe 

- Biologically speaking, enzymes help to lower the barriers that block chemical reactions 

o They help lower the activation energy 

- Enzymes have an ACTIVE SITE that bind to SUBSTRATE molecules 

o Reduces activation energy of a chemical reaction 

o Act as catalysts 

Activation Energy 

- Every reaction has a REACTANT and a PRODUCT 

- Reactant must collect enough energy to surpass the activation energy for reaction to 

occur 

- Lowering the activation energy greatly increases the probability of a reaction to occur 

o Catalysts increase the rate of chemical reaction 

Catalysts vs. Temperature 

- Catalysts can boost collisions to increase energy 

o Allows molecules to surpass activation energy for desired reaction 

 
- Temperature is NOT a catalyst 

o It speeds up the reaction, but is not selective 
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How do enzymes work 

- Each enzyme has an ACTIVE SITE which binds to SUBSTRATES 

o Forms an enzyme-substrate complex 

o Reaction occurs and produces enzyme-product complex 

o Product is then released 

o Allows enzyme to bind further substrate molecules 

Reaction Rates 

- Without any additional help, molecules will collide with each other due to RANDOM 

WALK 

- We can calculate the REACTION RATE for these collisions à the collision rate 

 
- Forward reaction: A+B à C, requires collisions 

- Backward Reaction: C à A+B, do not require collisions 

 
Free Energy (G) of a System 

- In biochemistry, the FREE ENERGY (G) is a quantity that expresses the disorder of the 

universe 

o G matters only when the system undergoes changes 

- The CHANGE IN G (𝜟G) is critical in determining whether a reaction is energetically 

favourable or unfavourable 

o Favourable ones have negative delta G 

- Unfavourable Reactions 

o What happens if we have an ENERGETICALLY UNFAVOURABLE REACTION with a 

POSITIVE 𝜟G (such as the formation of a peptide bond)? 
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§ REACTION COUPLING allows an overly negative Δ𝐺 from an energetically 

favourable reaction to drive an energetically unfavourable reaction 

• Overall delta G is negative 

Reaction Coordinate 

- Catalytic reactions can be represented by using an ENERGY vs. REACTION COORDINATE 

graph 

- In most cases, Δ𝐺+ is so high that an enzyme is required to overcome the activation 

energy barrier 

 
Arrhenius Equation 

 

Conceptual Model of an Enzyme 

- 1. Enzyme E has binding site with a shape and distribution of charges 

- 2. To match perfectly, S (or both E + S) must deform 

o Bonds can be close to breaking point 

- 3. From the ES state, stretched bond can break and give rise to a so-called EP complex 
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o New bond forms to stabilize product P 

- 4. P is not a perfect fit so it unbinds and returns E to normal 

Free Energy Landscape 
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Enzyme Kinetics 

- Formation of ES is fast and reversible; formation of a product is slow and irreversible 

 

 

 

- [ES] increases, but then decreases depending on enzyme efficiency 

- At steady state, [ES] is almost constant since r is very small 

 
- We can use the MICHAELIS-MENTEN MODEL to define the REACTION RATE once more 
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Approximations in Michaelis-Menten Model 

- Equilibrium Approximation 

o r = 0  

- Steady State Approximation 

o d[ES]/dt = 0 

Michaelis-Mention Equation Curve 

- 𝐾𝑚 is defined as the substrate concentration at which the reaction rate is half of 𝑉max 

 

- If Km increases à binding affinity is weaker à need more enzyme to reach Vmax/2 

- Sometimes, it’s more informative to take the reciprocal of the Michaelis-Menten Equation 

to get a LINEAR GRAPH 

o Called a Lineweaver-Burk Plot 
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Some Additional Comments 

- The Michaelis-Menten mechanism 

o Must apply both the equilibrium and steady-state approximation 

o Applies to many different kinds of enzymes including lysozyme 

- Formation of ES is fast and reversible à it can be spontaneous 

- The formation of a product is slow and irreversible (due to formation and break of bonds) 
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DNA Structure and Packing 
 
Nucleotides 

- DNA is made of 4 nucleotide building blocks 

o Each nucleotide has a sugar and phosphate linked to a base 

- There are 4 different bases: A, C, G, T 

o Covalently linked together 

o Arrows represented polarity, they run antiparallel to each other 

 
- There are 2 H-bonds for AT and 3 H-bonds for CG; Purine (AG) 2 rings; Pyrimidine (TC) 1 

ring 
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DNA Packaged into Chromosomes 

- In eukaryotic cells, very long double-stranded DNA molecules are packaged into 

structures called chromosomes à highly condensed 

- They contain long strings of genes 

o A long segment of DNA that contains instructions for making proteins 

- Detailed folding process to get to a chromosome 

 

Packing of DNA 

- Chromosome packing occurs on multiple levels 

o DNA wraps around histones, which then fold within themselves to become more 

compact 

- Each DNA molecule has been packaged into a mitotic chromosome that is 10,000-fold 

shorter than its fully extended length  

- Double helix à chromatin à nucleosomes à loops à chromosome 

 

 

Nucleosome and Histone 

Histone is an octamer (8 subunits) that has a diameter of about 

10nm.  
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Modelling DNA 

- Sequence (helix vs. coil) 

- Binding Site 

- Charged Rod 

- Elastic Rod 

- Random Walk 

 

DNA vs. Proteins 

- DNA provides instructions to create proteins 

- DNA helps to translate between polymer languages 

o Genes know how to make proteins 

o Proteins are sub-robots that carry out functions 

 
DNA Electrostatics 

- DNA is negatively charged at approximately − !
".$	&̇

 

- DNA is packaged by multivalent cations with 2+ or 3+ charges 

o Can form toroidal bundles 

o In salty solutions with 3+, DBA strands can attract each other 

o Viral DNA may be packed similarly 
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Eukaryotic DNA 

- Eukaryotic (human) DNA uses electrostatics to pack itself à but electrostatic does not 

stabilize  

o DNA (in red) is negatively charged 

o Histone tails (in yellow) are positively charged 

§ Stabilized by 200 positive charges on histone 

 
DNA as a Garden Hose 

- DNA chain is locally stiff (almost linear, minimal curvature) à for a short strand 

- But tends to coil up at large-length scales (𝑙( ≥ 500𝐴̇) à this length is due to base 

pairing & H-bonding 

o Allows for wider conformational space to increase entropy 

o Resists stretching or confinement 

o 𝑙( = “persistent length” à length of DNA that’s linear 
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DNA is a Twisted Ladder 

 

 

Three Well-Known DNA Helices 

- A-Form: 11 phosphates per one turn 

- B-Form: 10 phosphates per one turn 

- Z-Form: 12 phosphates 
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DNA Bending 

- We can find/calculate the energy penalty 

- At short lengths, free energy wins and DNA remains straight 

- At large length scales (entropy increases), DNA coils up à entropy wins over persistent 

length 

Linking Energetics and Stiffness 

- Can base stacking/pairing energetics be translated into chain stiffness or the persistence 

length lp? 

o We can use a worm like chain model to model this behaviour 

DNA Denaturation 

- DNA thermal denaturation involves heating up native DNA so that it comes denatured 

o Denatured DNA is when DNA is unwound into single stranded coils 

- The melting temperature Tm is directed related to DNA stability 

- Zipper Model 

o DNA denatures from one end à local denature 

o Transition at Tm becomes sharper as the number of base pairs increase 

- Local Denaturation 

o DNA can be locally denatured in various ways 

o Bubble formation can be catalyzed by DNA untwisting/unwinding proteins (like 

helicases) or binding of greasy molecules or DNA, which effectively reduces Tm (so 

that denature is easier) 
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DNA Worm Like Chain Model 
 
WLC Model 

- We make the linear rod into a bent rod 

 
Finding the Change in Length and Spring Constant 
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Finding the Bending Energy 

 
 

Where KB is the binding modulus defined by the microscopic entities 

 

Physical Meaning of Kappa B (KB) 

The “stiffness” of one bend of DNA 

 

𝐸)!*+	,-,./ =
𝜅0
2 C

1
𝑅1(𝑠) 𝑑𝑠

2

3
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Persistent Length (lp) 

The length scale within which chain remains straight à beyond lp, the chain coils up (which 

gives you the worm-like chain model WLC) 

 

𝑙( =
κ0
𝑘)𝑇

 

- For change in length (Δ𝐿 < 𝑙(): Linear Rod 

o Rod-like linear DNA structure (energy dominates) 

 
- Δ𝐿 ≈ 𝑙(: just bending model 

o Both effects are comparative (macroscopic and microscopic) à curved rod 
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- Δ𝐿 > 𝑙(: coil-like chain model (WLC) 

o A sum of various just bending model à entropic coil 
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Random Walk Chain Model 
 

The random walk (RW) chain model is given by: 

 
 

Multiplicity of RW Model 

If n = # of steps to right and N-n = # of steps to left 

 

 

𝑊(𝑁, 𝑛) =
𝑁!

T𝑥 + 𝑁2 W ! T𝑁 − 𝑥2 W !
= 𝑒4

5(7,*)
:!; = 𝑒4

"
1
<"
7)"  

Since entropy is -kb ln(w), this gives us the effective spring constant of DNA, keff 

𝑘!== =
𝑘0𝑇
𝑁𝑏1 
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Entropic Spring Pulled by External Force 

𝑥 =
𝐹
𝑘!==

 

Where x is the relative displacement with applied force and is proportional to F 

 

WLC and Chain Elasticity 

In 1995, J. Marko and E. Siggia discovered that: 

𝑙(𝑓
𝑘0𝑇

=
1
4T1 −

𝑥
𝐿W

41
−
1
4 +

𝑥
𝐿 

 
 

For a small force applied: 

- If we assume x/L is small since the stretch is small 

𝑘!== =
3𝑘0𝑇
2𝑙(𝐿

 

- If b = 2lp and L = Nb, then 

𝑘!== =
3𝑘0𝑇
𝐿𝑏  
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For a large force applied: 

- X approaches L à fully stretched  

- b = 2lp 

o b is the step size; anything that is greater than b refers to a “random” direction 

of movement 

 

 

Balancing Energy and Entropy 

A high probability of DNA step sizes / length will occur when energy (length) and entropy 

(number of configurations) are balanced 
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DNA Denaturation 
 

Model of DNA Denaturation 

 
 

Base Pairing and Base Stacking 

Base stacking is the stacking of paired bases 
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Coil vs. Helix for DNA 

 
Looping Statistics 
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Zipper Model – Weights 

We assume the DNA monomers are cubes with 6 surfaces and 6 degrees of freedom, then for n 

monomers in helical (H) states and a total of N monomers: 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑛) = (61(74*))𝜎𝑠*		 

Example: 

 
 

Partition Function (Zn) for the Zipper Model 

 

𝑍* = 617𝜎e T
𝑠
61W

*7

*>"
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Fractional Helicity for the Zipper Model 

 

𝜃 =
1
𝑁 (

𝑠( 𝛿𝛿𝜎 𝑍*)
𝑍*

) 

 

Melting Temperature 

The larger the fractional helicity, the larger the melting temperature 

The larger the monomer, the larger the melting temperature à shorter = easy to denature 
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DNA Twisting (T), Writhing (W), and Linking (L) 

T + W = L 

 
 

Untwisting DNA for Transcription 

When transcription occurs, W < 0 and T < 0 à We need to reduce w first before we reduce T 

- It facilitates the untwisting for the transcription process as RNA polymerase will attach 

and unwind DNA 
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DNA as a Giant Charge 
 
Overview 

DNA is the most highly-charged molecule in nature à we can define a charge per turn of the 

DNA 

 
Histone 

The histone octamer has: 

- 2 copies of (H4+H3+H2A+H2B) 

- A positive charge (220 e) so it is a major player in DNA packing 

o It attracts (electrostatic) the negatively charged DNA and want to neutralize 

(stability) both charges 
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Neutralization of Charge 

The histone tails are positively charged while DNA is negatively charge, so when they come 

together, the charges will neutralize via counter ions 

- There is competition between entropy and energy 

 
 

Energy and Potential 
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Capacitor Model for Double Layer Model 

The double layer model is between a diffusive layer and a backbone charge 

 
 

Key Equations: 
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Looking at a Charged Rod 

Xo is the thickness of the counter ion à The Gouy-Chapmm Length 

- If energy/counterion = KbT, xo is the thickness to stabalize the rod 

 
 

Two cases: 

1. If h (distance between DNA and histone) >> xo 

- DNA is a far from histone à no interactions between à DNA is stabilized as it is 

2. If h < xo (and h approaches 0) 

- Counterions bind (+ for DNA and – for histone) and are neutralized 

- Assume -220e counterions for +220e histone, we can expect only 220e of the DNA 

positive counterions will be neutralized 

- Excess positive counterions from DNA will be released  
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Energy Difference 

 
But, there is entropic effect associated with the release of positive counterions à we need to 

determine whether they are favourable 
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Entropic Effect of Counterions 

Case 1: We now have a Stern Layer when close to the DNA 

 
Case 2: in bulk (ie: no DNA) 
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DNA Histone: Number of DNA turns 

DNA can wrap around histones 

 

Total charge on histone is 220e 

- We need -220e on DNA to neutralize histone 

- Since we know that the charge per turn is e/1.7A à each charge takes up to 1.7A, 

therefore, -220e will need: 

220 × 1.7𝐴 = 374𝐴 

- Hence, number of turns is about 1.323 turns per histone, which is close to reality of 1.4 

turns 
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Binding Energy of DNA Histone 

Allow to show change of energy and entropy 

When bind: 

 
 

Energy vs. Entropy 
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We can then calculate the free-energy change 

 
This means that: 

- Wrapping DNA around a histone takes place spontaneously à energetically and 

entropically favourable 

- Overall, net favourable reaction is taking place 

o Despite a slight decrease in entropy due to a more compacted structure, since 

energy dropped a lot, it is still overall favourable 

 

DNA Histone Summary 

In reality, the turn of DNA per histone is 1.75 

- Because the DNA-Histone complex isn’t fully neutral but slightly negative 

o “Overcharging” à you have more DNA on histone and therefore more negative 

charge 

- The release of counterions only occur when DNA joins histone 

The counterion effect helps balance charges and promote stability in DNA packing 
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Lipids and Self-Assembly 
 

Structure of A Lipid 

Polar head + non-polar tail, with potential double bonds in tails 

 
In water 

Water molecules wraps around 
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Lipid Bilayer 

 
The bilayer does not stay flat naturally 

- Due to Edge effects à hydrophobic core does not want to be exposed 

- In many cases, vesicles are formed 
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Within the Bilayer 

Lateral diffusion, flexion, rotation, flip-flops (example: daptomycin) 

 

 

Cholesterol promotes fluidity due to increased space à but too much can create too much 

space and cause the membrane to break (5 – 30% is good for a fluid membrane) 
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Proteins and Other Things on the Lipid Membrane 

Transporters and channels, anchors, receptors, enzymes 

Transmembrane proteins, monolayer-associated, lipid-linked, protein attached 

 

 

Solubilizing Membrane Proteins 

Membrane proteins can be solubilized by a mild detergent such as Triton X-100 

- Detergent molecules disrupt the bilayer and brings proteins into the solution as protein-

detergent complexes 
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Overview of Self-Assembly 

- A micelle (one layer sphere) or vesicle (bi-layer sphere) can be formed via self-assembly 

- Amphiphilic molecules have both hydrophobic and hydrophilic areas 

o Two classes of amphiphiles: phospholipid and strong detergent 

- Self-assembly can occur at oil-water interface or emulsion 

 
Soap Bubble and CMC 

The critical micelle concentration (CMC) is the concentration of amphiphiles that is required to 

form a micelle à you have to have enough for self-assembly to occur 

 
Thermodynamics of Self-Assembly 

Parameters: 

- N = aggregation number (number of lipids in 1 aggregate) 

- [N] = concentration of amphiphiles in aggregates of aggregation number N (how many N-

mers / how many aggregates of size N) 
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Entropic Chemical Potential 

Depend on the concentration of N-mer 

 
Individual Chemical Potential 

Here, [N] means the number of lipids present (not the number of aggregates present) 

 
Dimerization (A+b<->C) 
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Determining the concentration of N-mer 

 
Two different cases: 

Case 1: As the number of lipids goes to infinity à the chemical potential is a constant after 

saturation point 

Case 2: if we have [1] only à no 2-mers are possible or most lipids exist in disordered state 

 

Therefore, if you do not have enough lipids for a small structure / micelle, then you surely do 

not have enough to form larger N-mer structure 

 

Events at CMC 

At CMC, we have just enough lipids to form [N] = 1 

There are different starting thresholds for different types/shapes of lipids 
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Beyond CMC 

At CMC à perfect aggregate structure 

Beyond CMC à many more possible structures formed at the same time 

 
Modelling Lipid Aggregates 

We use a convenient shape à a cone 
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Spherical Micelles 

 

𝑅 =
3𝑉,.?/
𝑎-

< 𝑙@.< 

Different Structures 

The type of structure formed will depend on the R-value 
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Interaction Between Lipids 

 
ao is the preferred lipid head group size à minimized free energy à determine N values 

 

Bending of Bilayer / Elastic Sheet 
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Spontaneous Curvature for Micelle 

Determines the type and symmetry of curvature based on Kappa (curvature) 

 
Modelling Lipid Membranes 

- Array of Springs 

- Random Surface 

- RC Circuit 

- Semi-Permeable Barrier 

Membrane Deformation 
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Height Function for Membrane Geometry 

A height function h(x,y) can describe membrane bending geometry 

- Surface of membrane is characterized by height at each coordinate point 

- Height function tells us how much the membrane is locally distributed from a flat 

reference point 

By creating coordinate patches on the membrane surface, we can apply the height function on 

the membrane 

- Work for any surface, including complex ones 

- You can use a simplified lone coordinate patch if your surface can be represented by one 

function only 

o No overhangs 

o No multilayers 

To calculate curvature, we make a best fit circle to the point where we are computing the 

curvature 

- We need to tangent planes for the best fit circle à h(x) and h(y) 
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Calculating Compression and Shearing 

To determine compression, we use a thickness function w(x,y) 

To determine shearing (how much sliding), we can only describe it by an angle variable theta 

- Since lipid bilayers are fluid, they can really support a shear deformity 

- But cell membranes are usually attached to an elastic network, which offers some rigidity 

- We then need to determine the angle theta changed 

 

Elastic Network of Lipids 

Model as elstic springs 
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Free Energy of Membrane Stretch 

 
Modelling Bending 
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Modelling Thickness 

 
Membrane Stiffness 

We can measure membrane stiffness via pipette aspiration 

- Micropipette grabs lipid bilayer vesicle 

-  Sunction pressure pulls a portion of the membrane into tip 
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Bending Free Energy, Stretching Free Energy, Free Energy of Pressure Difference, Work of 

Applied Load, Total Free energy 

 

 

 


